在上一节课中,我们对计数器框架做了需求分析和粗略的模块划分。今天这节课,我们利用面向对象设计、实现方法,并结合之前学过的设计思想、设计原则来看一下,如何编写灵活、可扩展的、高质量的代码实现。
话不多说,现在就让我们正式开始今天的学习吧!
小步快跑、逐步迭代 在上一节课中,我们将整个框架分为数据采集、存储、聚合统计、显示这四个模块。除此之外,关于统计触发方式(主动推送、被动触发统计)、统计时间区间(统计哪一个时间段内的数据)、统计时间间隔(对于主动推送方法,多久统计推送一次)我们也做了简单的设计。这里我就不重新描述了,你可以打开上一节课回顾一下。
虽然上一节课的最小原型为我们奠定了迭代开发的基础,但离我们最终期望的框架的样子还有很大的距离。我自己在写这篇文章的时候,试图去实现上面罗列的所有功能需求,希望写出一个完美的框架,发现这是件挺烧脑的事情,在写代码的过程中,一直有种“脑子不够使”的感觉。我这个有十多年工作经验的人尚且如此,对于没有太多经验的开发者来说,想一下子把所有需求都实现出来,更是一件非常有挑战的事情。一旦无法顺利完成,你可能就会有很强的挫败感,就会陷入自我否定的情绪中。
不过,即便你有能力将所有需求都实现,可能也要花费很大的设计精力和开发时间,迟迟没有产出,你的leader会因此产生很强的不可控感。对于现在的互联网项目来说,小步快跑、逐步迭代是一种更好的开发模式。所以,我们应该分多个版本逐步完善这个框架。第一个版本可以先实现一些基本功能,对于更高级、更复杂的功能,以及非功能性需求不做过高的要求,在后续的v2.0、v3.0……版本中继续迭代优化。
针对这个框架的开发,我们在v1.0版本中,暂时只实现下面这些功能。剩下的功能留在v2.0、v3.0版本,也就是我们后面的第39节和第40节课中再来讲解。
数据采集:负责打点采集原始数据,包括记录每次接口请求的响应时间和请求时间。
存储:负责将采集的原始数据保存下来,以便之后做聚合统计。数据的存储方式有很多种,我们暂时只支持Redis这一种存储方式,并且,采集与存储两个过程同步执行。
聚合统计:负责将原始数据聚合为统计数据,包括响应时间的最大值、最小值、平均值、99.9百分位值、99百分位值,以及接口请求的次数和tps。
显示:负责将统计数据以某种格式显示到终端,暂时只支持主动推送给命令行和邮件。命令行间隔n秒统计显示上m秒的数据(比如,间隔60s统计上60s的数据)。邮件每日统计上日的数据。
现在这个版本的需求比之前的要更加具体、简单了,实现起来也更加容易一些。实际上,学会结合具体的需求,做合理的预判、假设、取舍,规划版本的迭代设计开发,也是一个资深工程师必须要具备的能力。
面向对象设计与实现 在第13节 和第14节 课中,我们把面向对象设计与实现分开来讲解,界限划分比较明显。在实际的软件开发中,这两个过程往往是交叉进行的。一般是先有一个粗糙的设计,然后着手实现,实现的过程发现问题,再回过头来补充修改设计。所以,对于这个框架的开发来说,我们把设计和实现放到一块来讲解。
回顾上一节课中的最小原型的实现,所有的代码都耦合在一个类中,这显然是不合理的。接下来,我们就按照之前讲的面向对象设计的几个步骤,来重新划分、设计类。
1.划分职责进而识别出有哪些类 根据需求描述,我们先大致识别出下面几个接口或类。这一步不难,完全就是翻译需求。
MetricsCollector类负责提供API,来采集接口请求的原始数据。我们可以为MetricsCollector抽象出一个接口,但这并不是必须的,因为暂时我们只能想到一个MetricsCollector的实现方式。
MetricsStorage接口负责原始数据存储,RedisMetricsStorage类实现MetricsStorage接口。这样做是为了今后灵活地扩展新的存储方法,比如用HBase来存储。
Aggregator类负责根据原始数据计算统计数据。
ConsoleReporter类、EmailReporter类分别负责以一定频率统计并发送统计数据到命令行和邮件。至于ConsoleReporter和EmailReporter是否可以抽象出可复用的抽象类,或者抽象出一个公共的接口,我们暂时还不能确定。
2.定义类及类与类之间的关系 接下来就是定义类及属性和方法,定义类与类之间的关系。这两步没法分得很开,所以,我们今天将它们合在一起来讲解。
大致地识别出几个核心的类之后,我的习惯性做法是,先在IDE中创建好这几个类,然后开始试着定义它们的属性和方法。在设计类、类与类之间交互的时候,我会不断地用之前学过的设计原则和思想来审视设计是否合理,比如,是否满足单一职责原则、开闭原则、依赖注入、KISS原则、DRY原则、迪米特法则,是否符合基于接口而非实现编程思想,代码是否高内聚、低耦合,是否可以抽象出可复用代码等等。
MetricsCollector类的定义非常简单,具体代码如下所示。对比上一节课中最小原型的代码,MetricsCollector通过引入RequestInfo类来封装原始数据信息,用一个采集函数代替了之前的两个函数。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 public class MetricsCollector { private MetricsStorage metricsStorage; public MetricsCollector (MetricsStorage metricsStorage) { this .metricsStorage = metricsStorage; } public void recordRequest (RequestInfo requestInfo) { if (requestInfo == null || StringUtils.isBlank(requestInfo.getApiName())) { return ; } metricsStorage.saveRequestInfo(requestInfo); } } public class RequestInfo { private String apiName; private double responseTime; private long timestamp; }
MetricsStorage类和RedisMetricsStorage类的属性和方法也比较明确。具体的代码实现如下所示。注意,一次性取太长时间区间的数据,可能会导致拉取太多的数据到内存中,有可能会撑爆内存。对于Java来说,就有可能会触发OOM(Out Of Memory)。而且,即便不出现OOM,内存还够用,但也会因为内存吃紧,导致频繁的Full GC,进而导致系统接口请求处理变慢,甚至超时。这个问题解决起来并不难,先留给你自己思考一下。我会在第40节课中解答。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 public interface MetricsStorage { void saveRequestInfo (RequestInfo requestInfo) ; List<RequestInfo> getRequestInfos (String apiName, long startTimeInMillis, long endTimeInMillis) ; Map<String, List<RequestInfo>> getRequestInfos (long startTimeInMillis, long endTimeInMillis) ; } public class RedisMetricsStorage implements MetricsStorage { @Override public void saveRequestInfo (RequestInfo requestInfo) { } @Override public List<RequestInfo> getRequestInfos (String apiName, long startTimestamp, long endTimestamp) { } @Override public Map<String, List<RequestInfo>> getRequestInfos (long startTimestamp, long endTimestamp) { } }
MetricsCollector类和MetricsStorage类的设计思路比较简单,不同的人给出的设计结果应该大差不差。但是,统计和显示这两个功能就不一样了,可以有多种设计思路。实际上,如果我们把统计显示所要完成的功能逻辑细分一下的话,主要包含下面4点:
根据给定的时间区间,从数据库中拉取数据;
根据原始数据,计算得到统计数据;
将统计数据显示到终端(命令行或邮件);
定时触发以上3个过程的执行。
实际上,如果用一句话总结一下的话,面向对象设计和实现要做的事情,就是把合适的代码放到合适的类中 。所以,我们现在要做的工作就是,把以上的4个功能逻辑划分到几个类中。划分的方法有很多种,比如,我们可以把前两个逻辑放到一个类中,第3个逻辑放到另外一个类中,第4个逻辑作为上帝类(God Class)组合前面两个类来触发前3个逻辑的执行。当然,我们也可以把第2个逻辑单独放到一个类中,第1、3、4都放到另外一个类中。
至于到底选择哪种排列组合方式,判定的标准是,让代码尽量地满足低耦合、高内聚、单一职责、对扩展开放对修改关闭等之前讲到的各种设计原则和思想,尽量地让设计满足代码易复用、易读、易扩展、易维护。
我们暂时选择把第1、3、4逻辑放到ConsoleReporter或EmailReporter类中,把第2个逻辑放到Aggregator类中。其中,Aggregator类负责的逻辑比较简单,我们把它设计成只包含静态方法的工具类。具体的代码实现如下所示:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 public class Aggregator { public static RequestStat aggregate (List<RequestInfo> requestInfos, long durationInMillis) { double maxRespTime = Double.MIN_VALUE; double minRespTime = Double.MAX_VALUE; double avgRespTime = -1 ; double p999RespTime = -1 ; double p99RespTime = -1 ; double sumRespTime = 0 ; long count = 0 ; for (RequestInfo requestInfo : requestInfos) { ++count; double respTime = requestInfo.getResponseTime(); if (maxRespTime < respTime) { maxRespTime = respTime; } if (minRespTime > respTime) { minRespTime = respTime; } sumRespTime += respTime; } if (count != 0 ) { avgRespTime = sumRespTime / count; } long tps = (long )(count / durationInMillis * 1000 ); Collections.sort(requestInfos, new Comparator <RequestInfo>() { @Override public int compare (RequestInfo o1, RequestInfo o2) { double diff = o1.getResponseTime() - o2.getResponseTime(); if (diff < 0.0 ) { return -1 ; } else if (diff > 0.0 ) { return 1 ; } else { return 0 ; } } }); int idx999 = (int )(count * 0.999 ); int idx99 = (int )(count * 0.99 ); if (count != 0 ) { p999RespTime = requestInfos.get(idx999).getResponseTime(); p99RespTime = requestInfos.get(idx99).getResponseTime(); } RequestStat requestStat = new RequestStat (); requestStat.setMaxResponseTime(maxRespTime); requestStat.setMinResponseTime(minRespTime); requestStat.setAvgResponseTime(avgRespTime); requestStat.setP999ResponseTime(p999RespTime); requestStat.setP99ResponseTime(p99RespTime); requestStat.setCount(count); requestStat.setTps(tps); return requestStat; } } public class RequestStat { private double maxResponseTime; private double minResponseTime; private double avgResponseTime; private double p999ResponseTime; private double p99ResponseTime; private long count; private long tps; }
ConsoleReporter类相当于一个上帝类,定时根据给定的时间区间,从数据库中取出数据,借助Aggregator类完成统计工作,并将统计结果输出到命令行。具体的代码实现如下所示:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 public class ConsoleReporter { private MetricsStorage metricsStorage; private ScheduledExecutorService executor; public ConsoleReporter (MetricsStorage metricsStorage) { this .metricsStorage = metricsStorage; this .executor = Executors.newSingleThreadScheduledExecutor(); } public void startRepeatedReport (long periodInSeconds, long durationInSeconds) { executor.scheduleAtFixedRate(new Runnable () { @Override public void run () { long durationInMillis = durationInSeconds * 1000 ; long endTimeInMillis = System.currentTimeMillis(); long startTimeInMillis = endTimeInMillis - durationInMillis; Map<String, List<RequestInfo>> requestInfos = metricsStorage.getRequestInfos(startTimeInMillis, endTimeInMillis); Map<String, RequestStat> stats = new HashMap <>(); for (Map.Entry<String, List<RequestInfo>> entry : requestInfos.entrySet()) { String apiName = entry.getKey(); List<RequestInfo> requestInfosPerApi = entry.getValue(); RequestStat requestStat = Aggregator.aggregate(requestInfosPerApi, durationInMillis); stats.put(apiName, requestStat); } System.out.println("Time Span: [" + startTimeInMillis + ", " + endTimeInMillis + "]" ); Gson gson = new Gson (); System.out.println(gson.toJson(stats)); } }, 0 , periodInSeconds, TimeUnit.SECONDS); } } public class EmailReporter { private static final Long DAY_HOURS_IN_SECONDS = 86400L ; private MetricsStorage metricsStorage; private EmailSender emailSender; private List<String> toAddresses = new ArrayList <>(); public EmailReporter (MetricsStorage metricsStorage) { this (metricsStorage, new EmailSender ()); } public EmailReporter (MetricsStorage metricsStorage, EmailSender emailSender) { this .metricsStorage = metricsStorage; this .emailSender = emailSender; } public void addToAddress (String address) { toAddresses.add(address); } public void startDailyReport () { Calendar calendar = Calendar.getInstance(); calendar.add(Calendar.DATE, 1 ); calendar.set(Calendar.HOUR_OF_DAY, 0 ); calendar.set(Calendar.MINUTE, 0 ); calendar.set(Calendar.SECOND, 0 ); calendar.set(Calendar.MILLISECOND, 0 ); Date firstTime = calendar.getTime(); Timer timer = new Timer (); timer.schedule(new TimerTask () { @Override public void run () { long durationInMillis = DAY_HOURS_IN_SECONDS * 1000 ; long endTimeInMillis = System.currentTimeMillis(); long startTimeInMillis = endTimeInMillis - durationInMillis; Map<String, List<RequestInfo>> requestInfos = metricsStorage.getRequestInfos(startTimeInMillis, endTimeInMillis); Map<String, RequestStat> stats = new HashMap <>(); for (Map.Entry<String, List<RequestInfo>> entry : requestInfos.entrySet()) { String apiName = entry.getKey(); List<RequestInfo> requestInfosPerApi = entry.getValue(); RequestStat requestStat = Aggregator.aggregate(requestInfosPerApi, durationInMillis); stats.put(apiName, requestStat); } } }, firstTime, DAY_HOURS_IN_SECONDS * 1000 ); } }
3.将类组装起来并提供执行入口 因为这个框架稍微有些特殊,有两个执行入口:一个是MetricsCollector类,提供了一组API来采集原始数据;另一个是ConsoleReporter类和EmailReporter类,用来触发统计显示。框架具体的使用方式如下所示:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 public class Demo { public static void main (String[] args) { MetricsStorage storage = new RedisMetricsStorage (); ConsoleReporter consoleReporter = new ConsoleReporter (storage); consoleReporter.startRepeatedReport(60 , 60 ); EmailReporter emailReporter = new EmailReporter (storage); emailReporter.addToAddress("wangzheng@xzg.com" ); emailReporter.startDailyReport(); MetricsCollector collector = new MetricsCollector (storage); collector.recordRequest(new RequestInfo ("register" , 123 , 10234 )); collector.recordRequest(new RequestInfo ("register" , 223 , 11234 )); collector.recordRequest(new RequestInfo ("register" , 323 , 12334 )); collector.recordRequest(new RequestInfo ("login" , 23 , 12434 )); collector.recordRequest(new RequestInfo ("login" , 1223 , 14234 )); try { Thread.sleep(100000 ); } catch (InterruptedException e) { e.printStackTrace(); } } }
Review设计与实现 我们前面讲到了SOLID、KISS、DRY、YAGNI、LOD等设计原则,基于接口而非实现编程、多用组合少用继承、高内聚低耦合等设计思想。我们现在就来看下,上面的代码实现是否符合这些设计原则和思想。
MetricsCollector负责采集和存储数据,职责相对来说还算比较单一。它基于接口而非实现编程,通过依赖注入的方式来传递MetricsStorage对象,可以在不需要修改代码的情况下,灵活地替换不同的存储方式,满足开闭原则。
MetricsStorage、RedisMetricsStorage
MetricsStorage和RedisMetricsStorage的设计比较简单。当我们需要实现新的存储方式的时候,只需要实现MetricsStorage接口即可。因为所有用到MetricsStorage和RedisMetricsStorage的地方,都是基于相同的接口函数来编程的,所以,除了在组装类的地方有所改动(从RedisMetricsStorage改为新的存储实现类),其他接口函数调用的地方都不需要改动,满足开闭原则。
Aggregator类是一个工具类,里面只有一个静态函数,有50行左右的代码量,负责各种统计数据的计算。当需要扩展新的统计功能的时候,需要修改aggregate()函数代码,并且一旦越来越多的统计功能添加进来之后,这个函数的代码量会持续增加,可读性、可维护性就变差了。所以,从刚刚的分析来看,这个类的设计可能存在职责不够单一、不易扩展等问题,需要在之后的版本中,对其结构做优化。
ConsoleReporter、EmailReporter
ConsoleReporter和EmailReporter中存在代码重复问题。在这两个类中,从数据库中取数据、做统计的逻辑都是相同的,可以抽取出来复用,否则就违反了DRY原则。而且整个类负责的事情比较多,职责不是太单一。特别是显示部分的代码,可能会比较复杂(比如Email的展示方式),最好是将显示部分的代码逻辑拆分成独立的类。除此之外,因为代码中涉及线程操作,并且调用了Aggregator的静态函数,所以代码的可测试性不好。
今天我们给出的代码实现还是有诸多问题的,在后面的章节(第39、40讲)中,我们会慢慢优化,给你展示整个设计演进的过程,这比直接给你最终的最优方案要有意义得多!实际上,优秀的代码都是重构出来的,复杂的代码都是慢慢堆砌出来的 。所以,当你看到那些优秀而复杂的开源代码或者项目代码的时候,也不必自惭形秽,觉得自己写不出来。毕竟罗马不是一天建成的,这些优秀的代码也是靠几年的时间慢慢迭代优化出来的。
重点回顾 好了,今天的内容到此就讲完了。我们一块总结回顾一下,你需要掌握的重点内容。
写代码的过程本就是一个修修改改、不停调整的过程,肯定不是一气呵成的。你看到的那些大牛开源项目的设计和实现,也都是在不停优化、修改过程中产生的。比如,我们熟悉的Unix系统,第一版很简单、粗糙,代码不到1万行。所以,迭代思维很重要,不要刚开始就追求完美。
面向对象设计和实现要做的事情,就是把合适的代码放到合适的类中。至于到底选择哪种划分方法,判定的标准是让代码尽量地满足低耦合、高内聚、单一职责、对扩展开放对修改关闭等之前讲的各种设计原则和思想,尽量地做到代码可复用、易读、易扩展、易维护。
课堂讨论 今天课堂讨论题有下面两道。
对于今天的设计与代码实现,你有没有发现哪些不合理的地方?有哪些可以继续优化的地方呢?或者留言说说你的设计方案。
说一个你觉得不错的开源框架或者项目,聊聊你为什么觉得它不错?
欢迎在留言区写下你的答案,和同学一起交流和分享。如果有收获,也欢迎你把这篇文章分享给你的朋友。