23基础篇-二叉树基础(上):什么样的二叉树适合用数组来存储?
前面我们讲的都是线性表结构,栈、队列等等。今天我们讲一种非线性表结构,树。树这种数据结构比线性表的数据结构要复杂得多,内容也比较多,所以我会分四节来讲解。
前面我们讲的都是线性表结构,栈、队列等等。今天我们讲一种非线性表结构,树。树这种数据结构比线性表的数据结构要复杂得多,内容也比较多,所以我会分四节来讲解。
上一节,我讲了哈希算法的四个应用,它们分别是:安全加密、数据校验、唯一标识、散列函数。今天,我们再来看剩余三种应用:负载均衡、数据分片、分布式存储。
你可能已经发现,这三个应用都跟分布式系统有关。没错,今天我就带你看下,哈希算法是如何解决这些分布式问题的。
还记得2011年CSDN的“脱库”事件吗?当时,CSDN网站被黑客攻击,超过600万用户的注册邮箱和密码明文被泄露,很多网友对CSDN明文保存用户密码行为产生了不满。如果你是CSDN的一名工程师,你会如何存储用户密码这么重要的数据吗?仅仅MD5加密一下存储就够了吗? 要想搞清楚这个问题,就要先弄明白哈希算法。
哈希算法历史悠久,业界著名的哈希算法也有很多,比如MD5、SHA等。在我们平时的开发中,基本上都是拿现成的直接用。所以,我今天不会重点剖析哈希算法的原理,也不会教你如何设计一个哈希算法,而是从实战的角度告诉你,在实际的开发中,我们该如何用哈希算法解决问题。
我们已经学习了20节内容,你有没有发现,有两种数据结构,散列表和链表,经常会被放在一起使用。你还记得,前面的章节中都有哪些地方讲到散列表和链表的组合使用吗?我带你一起回忆一下。
在链表那一节,我讲到如何用链表来实现LRU缓存淘汰算法,但是链表实现的LRU缓存淘汰算法的时间复杂度是O(n),当时我也提到了,通过散列表可以将这个时间复杂度降低到O(1)。
在跳表那一节,我提到Redis的有序集合是使用跳表来实现的,跳表可以看作一种改进版的链表。当时我们也提到,Redis有序集合不仅使用了跳表,还用到了散列表。
除此之外,如果你熟悉Java编程语言,你会发现LinkedHashMap这样一个常用的容器,也用到了散列表和链表两种数据结构。
今天,我们就来看看,在这几个问题中,散列表和链表都是如何组合起来使用的,以及为什么散列表和链表会经常放到一块使用。
通过上一节的学习,我们知道,散列表的查询效率并不能笼统地说成是O(1)。它跟散列函数、装载因子、散列冲突等都有关系。如果散列函数设计得不好,或者装载因子过高,都可能导致散列冲突发生的概率升高,查询效率下降。
在极端情况下,有些恶意的攻击者,还有可能通过精心构造的数据,使得所有的数据经过散列函数之后,都散列到同一个槽里。如果我们使用的是基于链表的冲突解决方法,那这个时候,散列表就会退化为链表,查询的时间复杂度就从O(1)急剧退化为O(n)。
如果散列表中有10万个数据,退化后的散列表查询的效率就下降了10万倍。更直接点说,如果之前运行100次查询只需要0.1秒,那现在就需要1万秒。这样就有可能因为查询操作消耗大量CPU或者线程资源,导致系统无法响应其他请求,从而达到拒绝服务攻击(DoS)的目的。这也就是散列表碰撞攻击的基本原理。
今天,我们就来学习一下,如何设计一个可以应对各种异常情况的工业级散列表,来避免在散列冲突的情况下,散列表性能的急剧下降,并且能抵抗散列碰撞攻击?
Word这种文本编辑器你平时应该经常用吧,那你有没有留意过它的拼写检查功能呢?一旦我们在Word里输入一个错误的英文单词,它就会用标红的方式提示“拼写错误”。Word的这个单词拼写检查功能,虽然很小但却非常实用。你有没有想过,这个功能是如何实现的呢?
其实啊,一点儿都不难。只要你学完今天的内容,散列表(Hash Table)。你就能像微软Office的工程师一样,轻松实现这个功能。
上两节我们讲了二分查找算法。当时我讲到,因为二分查找底层依赖的是数组随机访问的特性,所以只能用数组来实现。如果数据存储在链表中,就真的没法用二分查找算法了吗?
实际上,我们只需要对链表稍加改造,就可以支持类似“二分”的查找算法。我们把改造之后的数据结构叫做跳表(Skip list),也就是今天要讲的内容。
通过IP地址来查找IP归属地的功能,不知道你有没有用过?没用过也没关系,你现在可以打开百度,在搜索框里随便输一个IP地址,就会看到它的归属地。
这个功能并不复杂,它是通过维护一个很大的IP地址库来实现的。地址库中包括IP地址范围和归属地的对应关系。
当我们想要查询202.102.133.13这个IP地址的归属地时,我们就在地址库中搜索,发现这个IP地址落在[202.102.133.0, 202.102.133.255]这个地址范围内,那我们就可以将这个IP地址范围对应的归属地“山东东营市”显示给用户了。
1 | [202.102.133.0, 202.102.133.255] 山东东营市 |
现在我的问题是,在庞大的地址库中逐一比对IP地址所在的区间,是非常耗时的。假设我们有12万条这样的IP区间与归属地的对应关系,如何快速定位出一个IP地址的归属地呢?
是不是觉得比较难?不要紧,等学完今天的内容,你就会发现这个问题其实很简单。
上一节我讲了二分查找的原理,并且介绍了最简单的一种二分查找的代码实现。今天我们来讲几种二分查找的变形问题。
不知道你有没有听过这样一个说法:“十个二分九个错”。二分查找虽然原理极其简单,但是想要写出没有Bug的二分查找并不容易。
唐纳德·克努特(Donald E.Knuth)在《计算机程序设计艺术》的第3卷《排序和查找》中说到:“尽管第一个二分查找算法于1946年出现,然而第一个完全正确的二分查找算法实现直到1962年才出现。”
你可能会说,我们上一节学的二分查找的代码实现并不难写啊。那是因为上一节讲的只是二分查找中最简单的一种情况,在不存在重复元素的有序数组中,查找值等于给定值的元素。最简单的二分查找写起来确实不难,但是,二分查找的变形问题就没那么好写了。
二分查找的变形问题很多,我只选择几个典型的来讲解,其他的你可以借助我今天讲的思路自己来分析。
需要特别说明一点,为了简化讲解,今天的内容,我都以数据是从小到大排列为前提,如果你要处理的数据是从大到小排列的,解决思路也是一样的。同时,我希望你最好先自己动手试着写一下这4个变形问题,然后再看我的讲述,这样你就会对我说的“二分查找比较难写”有更加深的体会了。
上一节中的二分查找是最简单的一种,即有序数据集合中不存在重复的数据,我们在其中查找值等于某个给定值的数据。如果我们将这个问题稍微修改下,有序数据集合中存在重复的数据,我们希望找到第一个值等于给定值的数据,这样之前的二分查找代码还能继续工作吗?
比如下面这样一个有序数组,其中,a[5],a[6],a[7]的值都等于8,是重复的数据。我们希望查找第一个等于8的数据,也就是下标是5的元素。
如果我们用上一节课讲的二分查找的代码实现,首先拿8与区间的中间值a[4]比较,8比6大,于是在下标5到9之间继续查找。下标5和9的中间位置是下标7,a[7]正好等于8,所以代码就返回了。
尽管a[7]也等于8,但它并不是我们想要找的第一个等于8的元素,因为第一个值等于8的元素是数组下标为5的元素。我们上一节讲的二分查找代码就无法处理这种情况了。所以,针对这个变形问题,我们可以稍微改造一下上一节的代码。
100个人写二分查找就会有100种写法。网上有很多关于变形二分查找的实现方法,有很多写得非常简洁,比如下面这个写法。但是,尽管简洁,理解起来却非常烧脑,也很容易写错。
1 | public int bsearch(int[] a, int n, int value) { |
看完这个实现之后,你是不是觉得很不好理解?如果你只是死记硬背这个写法,我敢保证,过不了几天,你就会全都忘光,再让你写,90%的可能会写错。所以,我换了一种实现方法,你看看是不是更容易理解呢?
1 | public int bsearch(int[] a, int n, int value) { |
我来稍微解释一下这段代码。a[mid]跟要查找的value的大小关系有三种情况:大于、小于、等于。对于a[mid]>value的情况,我们需要更新high= mid-1;对于a[mid]<value的情况,我们需要更新low=mid+1。这两点都很好理解。那当a[mid]=value的时候应该如何处理呢?
如果我们查找的是任意一个值等于给定值的元素,当a[mid]等于要查找的值时,a[mid]就是我们要找的元素。但是,如果我们求解的是第一个值等于给定值的元素,当a[mid]等于要查找的值时,我们就需要确认一下这个a[mid]是不是第一个值等于给定值的元素。
我们重点看第11行代码。如果mid等于0,那这个元素已经是数组的第一个元素,那它肯定是我们要找的;如果mid不等于0,但a[mid]的前一个元素a[mid-1]不等于value,那也说明a[mid]就是我们要找的第一个值等于给定值的元素。
如果经过检查之后发现a[mid]前面的一个元素a[mid-1]也等于value,那说明此时的a[mid]肯定不是我们要查找的第一个值等于给定值的元素。那我们就更新high=mid-1,因为要找的元素肯定出现在[low, mid-1]之间。
对比上面的两段代码,是不是下面那种更好理解?实际上,很多人都觉得变形的二分查找很难写,主要原因是太追求第一种那样完美、简洁的写法。而对于我们做工程开发的人来说,代码易读懂、没Bug,其实更重要,所以我觉得第二种写法更好。
前面的问题是查找第一个值等于给定值的元素,我现在把问题稍微改一下,查找最后一个值等于给定值的元素,又该如何做呢?
如果你掌握了前面的写法,那这个问题你应该很轻松就能解决。你可以先试着实现一下,然后跟我写的对比一下。
1 | public int bsearch(int[] a, int n, int value) { |
我们还是重点看第11行代码。如果a[mid]这个元素已经是数组中的最后一个元素了,那它肯定是我们要找的;如果a[mid]的后一个元素a[mid+1]不等于value,那也说明a[mid]就是我们要找的最后一个值等于给定值的元素。
如果我们经过检查之后,发现a[mid]后面的一个元素a[mid+1]也等于value,那说明当前的这个a[mid]并不是最后一个值等于给定值的元素。我们就更新low=mid+1,因为要找的元素肯定出现在[mid+1, high]之间。
现在我们再来看另外一类变形问题。在有序数组中,查找第一个大于等于给定值的元素。比如,数组中存储的这样一个序列:3,4,6,7,10。如果查找第一个大于等于5的元素,那就是6。
实际上,实现的思路跟前面的那两种变形问题的实现思路类似,代码写起来甚至更简洁。
1 | public int bsearch(int[] a, int n, int value) { |
如果a[mid]小于要查找的值value,那要查找的值肯定在[mid+1, high]之间,所以,我们更新low=mid+1。
对于a[mid]大于等于给定值value的情况,我们要先看下这个a[mid]是不是我们要找的第一个值大于等于给定值的元素。如果a[mid]前面已经没有元素,或者前面一个元素小于要查找的值value,那a[mid]就是我们要找的元素。这段逻辑对应的代码是第7行。
如果a[mid-1]也大于等于要查找的值value,那说明要查找的元素在[low, mid-1]之间,所以,我们将high更新为mid-1。
现在,我们来看最后一种二分查找的变形问题,查找最后一个小于等于给定值的元素。比如,数组中存储了这样一组数据:3,5,6,8,9,10。最后一个小于等于7的元素就是6。是不是有点类似上面那一种?实际上,实现思路也是一样的。
有了前面的基础,你完全可以自己写出来了,所以我就不详细分析了。我把代码贴出来,你可以写完之后对比一下。
1 | public int bsearch7(int[] a, int n, int value) { |
好了,现在我们回头来看开篇的问题:如何快速定位出一个IP地址的归属地?
现在这个问题应该很简单了。如果IP区间与归属地的对应关系不经常更新,我们可以先预处理这12万条数据,让其按照起始IP从小到大排序。如何来排序呢?我们知道,IP地址可以转化为32位的整型数。所以,我们可以将起始地址,按照对应的整型值的大小关系,从小到大进行排序。
然后,这个问题就可以转化为我刚讲的第四种变形问题“在有序数组中,查找最后一个小于等于某个给定值的元素”了。
当我们要查询某个IP归属地时,我们可以先通过二分查找,找到最后一个起始IP小于等于这个IP的IP区间,然后,检查这个IP是否在这个IP区间内,如果在,我们就取出对应的归属地显示;如果不在,就返回未查找到。
上一节我说过,凡是用二分查找能解决的,绝大部分我们更倾向于用散列表或者二叉查找树。即便是二分查找在内存使用上更节省,但是毕竟内存如此紧缺的情况并不多。那二分查找真的没什么用处了吗?
实际上,上一节讲的求“值等于给定值”的二分查找确实不怎么会被用到,二分查找更适合用在“近似”查找问题,在这类问题上,二分查找的优势更加明显。比如今天讲的这几种变体问题,用其他数据结构,比如散列表、二叉树,就比较难实现了。
变体的二分查找算法写起来非常烧脑,很容易因为细节处理不好而产生Bug,这些容易出错的细节有:终止条件、区间上下界更新方法、返回值选择。所以今天的内容你最好能用自己实现一遍,对锻炼编码能力、逻辑思维、写出Bug free代码,会很有帮助。
我们今天讲的都是非常规的二分查找问题,今天的思考题也是一个非常规的二分查找问题。如果有序数组是一个循环有序数组,比如4,5,6,1,2,3。针对这种情况,如何实现一个求“值等于给定值”的二分查找算法呢?
欢迎留言和我分享,我会第一时间给你反馈。
今天我们讲一种针对有序数据集合的查找算法:二分查找(Binary Search)算法,也叫折半查找算法。二分查找的思想非常简单,很多非计算机专业的同学很容易就能理解,但是看似越简单的东西往往越难掌握好,想要灵活应用就更加困难。
老规矩,我们还是来看一道思考题。
假设我们有1000万个整数数据,每个数据占8个字节,如何设计数据结构和算法,快速判断某个整数是否出现在这1000万数据中? 我们希望这个功能不要占用太多的内存空间,最多不要超过100MB,你会怎么做呢?带着这个问题,让我们进入今天的内容吧!
几乎所有的编程语言都会提供排序函数,比如C语言中qsort(),C++ STL中的sort()、stable_sort(),还有Java语言中的Collections.sort()。在平时的开发中,我们也都是直接使用这些现成的函数来实现业务逻辑中的排序功能。那你知道这些排序函数是如何实现的吗?底层都利用了哪种排序算法呢?
基于这些问题,今天我们就来看排序这部分的最后一块内容:如何实现一个通用的、高性能的排序函数?